Focus: Mission impossible

Il teletrasporto è realtà. Nel mondo dei quanti

Una scena di Star trek
di Alessandro Zavatta

A spiegare il funzionamento e le possibili future applicazioni pratiche di questo processo, che si verifica nel mondo microscopico degli atomi e delle molecole, è Alessandro Zavatta dell'Istituto nazionale di ottica del Consiglio nazionale delle ricerche

Pubblicato il

Con le parole “Beam me up, Scotty” il capitano Kirk, nella celebre serie televisiva Star Trek, ordinava all’ingegnere capo Scott, addetto al teletrasporto, di trasferirlo su qualche pianeta remoto dell’Universo. Insieme ai superpoteri dei personaggi della Marvel, questo è quello che ci viene alla mente non appena si pronuncia la parola teletrasporto, cioè un modo per trasferire cose o persone da un punto a un altro dello spazio con effetto immediato, senza percorrere la distanza che li separa. 

Purtroppo tale modalità di trasferimento è a oggi una possibilità che rimane solo nel mondo delle fiction e dei cartoni animati per i più piccoli. Nonostante ciò, il teletrasporto è una realtà concreta nel mondo microscopico, cioè in quello fatto di particelle fondamentali, atomi e molecole, che è governato dalle leggi della meccanica quantistica. Qui ogni elemento, o sistema, viene decritto da uno stato quantistico ben preciso, che ne racchiude tutta l’informazione e segue leggi che a volte ci appaiono controintuitive e in contrasto con la fisica classica.

Nel teletrasporto quantistico non si trasferisce materia, ma quello che in gergo viene chiamata la “funzione d’onda”, ovvero l’informazione che descrive esattamente in quale stato si trova una particella o, più in generale, un sistema fisico. È proprio questa funzione d’onda a raccogliere tutta l’informazione possibile che viene utilizzata per ricostruire altrove quella particella o quel corpo con le stesse caratteristiche di quello iniziale.

Alla base del fenomeno del teletrasporto si ha l’effetto a distanza che si manifesta fra due particelle quantisticamente correlate o intrecciate, dette “entangled”; questo effetto, evidenziato per la prima volta in un celebre articolo firmato da Einstein, Podolsky e Rosen nel 1935, rappresenta una delle tante peculiarità del mondo quantistico. L’“entanglement”, consiste proprio nell’“intreccio” inestricabile di due o più particelle, le cui proprietà non possono più essere descritte singolarmente: due particelle entagled si comportano come se fossero tutt’uno, anche se si trovano molto distanti l’una dall’altra.

Consideriamo il caso in cui Alice desideri teletrasportare una particella all’amico Bob, che si trova a grande distante da lei. La particella posseduta da Alice viene distrutta per essere “ricreata” da Bob, ottenendo così una particella con le stesse proprietà di quella iniziale. Tutto ciò può avvenire, in maniera non istantanea, grazie alla condivisione di una coppia di particelle intrecciate, a un canale di comunicazione classico, come internet o il telefono, e a patto che Alice non conosca lo stato della particella da teletrasportare.

Ma se le cose stanno così, il teletrasporto quantistico può avere applicazioni pratiche? Certamente sì. Il teletrasporto è un protocollo della teoria dell’informazione quantistica che sta alla base delle tecnologie del futuro. In particolare, è un fenomeno ampiamente utilizzato all’interno del computer quantistico che, in un futuro non molto lontano, sarà in grado di risolvere problemi attualmente impossibili da affrontare da un normale computer. Inoltre, il teletrasporto quantistico è un buon candidato come protocollo di comunicazione per una rete Internet quantistica. Questa nuova rete garantirà la comunicazione fra sensori, simulatori e computer quantistici creando nuove applicazioni, dalla sicurezza delle comunicazioni allo studio di nuovi medicinali o materiali, fino al monitoraggio ambientale su larga scala.

A livello di ricerca, i primi esperimenti pionieristici di teletrasporto quantistico furono condotti a Roma e a Vienna nel 1997, utilizzando fotoni. In entrambi i casi, i ricercatori riuscirono a teletrasportare a distanza le informazioni quantistiche riproducendo esattamente lo stato di un fotone. Più di recente, lo stesso schema è stato realizzato su grandi distanze mediante un satellite messo in orbita con a bordo una sorgente di fotoni entangled. Ulteriori passi avanti hanno permesso di teletrasportare lo stato di un atomo di itterbio a un secondo atomo identico che si trovava a un metro di distanza.

Il Cnr è particolarmente attivo in questo campo di ricerca grazie alle attività dell’Istituto nazionale di ottica, che negli anni è diventato un’eccellenza nazionale, con innumerevoli contributi apparsi sulle più importanti riviste scientifiche internazionali riguardanti l’ottica quantistica e le comunicazioni quantistiche.

Fonte: Alessandro Zavatta, Istituto nazionale di ottica, e-mail: alessandro.zavatta@ino.cnr.it